Reader's Club

Home Category

牛津通识读本:数学(中文版) [1]

By Root 1070 0
所有的数学分支按是否有联系组成一个网络,一定是一个连通的网络,而不会有一些学科,尽管它们看来与其他分支联系很少,游离于整个数学这一大网络之外。这正像有些人有很多亲戚朋友,有些则很少,但整个社会的人群所组成的网络仍是连通的一样。他的这一观点及如此通俗易懂的说法曾给我留下了深刻的印象,从这个意义上说,我和他已有一面之缘。这次有机会看到他这一本颇具特色的数学科普著作的中译本问世,也是一件幸事,特为之序。

2013年12月25日

第一章 模型

扔石头问题

风轻云淡的一天,你站在水平地面上,手里拿着一块石头,想要扔得越远越好。已知你能用多大的力气扔出去,那么最重要的决策就是选择石头出手时与地面的夹角。如果夹角太小,那么尽管石头在水平方向的速度分量很大,也会很快落到地面上,因而飞不出太远;反之,若夹角过大,石头能在空中停留较久但掠过的水平距离却不远。很明显我们需要在这中间作一些权衡。

利用牛顿物理学和微积分的一些初步知识,可以计算得到最佳的折中方案——石头离手时应与地面呈45度夹角。就这个问题而言,这基本上是最简洁优美的答案了。同样的计算还可以告诉我们石头在空中的飞行轨迹是个抛物线,甚至还能得出脱手后在空中任意时刻的速度有多大。

看起来,科学与数学相结合能够使我们预测石块飞出去直至落地之前的一切行为。然而,只有在我们作了许多的简化假设之后才能够如此。其中最主要的假设是,作用在石头上的只有一种力,即地球的引力,而且这种力的大小及方向在各处总是一样的。但实际上并非如此,因为它忽略了空气阻力、地球自转,也没有计入月球的微弱引力,而且越到高处地球引力越小,在地球表面上“垂直向下”的方向也随着具体位置的不同而逐渐变化。即使你能够接受上述计算,45度角的结果也基于另一个隐含假设:石头离手的初始速度与夹角无关。这也是不正确的:实际上夹角越小,人能使上的力气越大。

上述这些缺陷的重要性各有不同,我们在计算和预测中应该采取怎样的态度来对待这些偏差呢?把所有因素全部考虑在内进行计算固然是一种办法,但还有一种远为明智的办法:首先决定你需要达到什么样的精确度,然后用尽可能简单的办法达到它。如果经验表明一项简化的假设只会对结果产生微不足道的影响,那就应当采取这样的假设。

例如,空气阻力的影响相对来说是比较小的,因为石头很小很硬,密度大。假如在出手角度上有较大的误差,那么通过计入空气阻力来将计算复杂化就没有多大意义。如果一定要考虑进去的话,以下这条经验法则就足矣:空气阻力变大,则通过减小出手角度来弥补。

何为数学模型

当我们考察一个物理问题的解答时,十有八九能够就其中科学贡献部分和数学贡献部分划出一道清晰的界线。科学家在观察和实验的基础上,作一些简洁性与解释有效性的一般性考虑,建立一种理论。数学家,或者做数学的科学家,则研究理论的纯粹逻辑结果。有时候,这些情形是常规计算的结果,常规计算所预言的现象正是理论在提出时所要解释的。在某些偶然的情况下,理论所作出的预言则完全出乎意料。如果这些意料之外的现象后来被实验所证实,那么我们就得到了支持这种理论的重要证据。

然而,由于我上面所讨论到的简化问题,“证实一项科学预言”的概念就多多少少有了些问题。让我们考虑另一个例子:牛顿的运动定律和引力定律告诉我们,两个物体从同样的高度开始作自由落体运动,它们将同时到达地面(如果地面平坦)。这种现象由伽利略首先提出,它有点违背我们的直觉。实际上,它违背的不仅是我们的直觉:如果你亲自试一试,比方说用高尔夫球和乒乓球,你会发现高尔夫球首先落地。既然如此,究竟在什么意义上伽利略的论断是正确的呢?

当然,由于空气阻力的存在,我们不可能把这个小实验当作伽利略理论的反例:实验证明,当空气阻力很小时理论是正确的。如果你对此有所怀疑,觉得空气阻力实在稀松平常,怎能总是挽救牛顿力学的预测于失败之际,那么,找个机会去观察一下羽毛在真空中的下落,你就能重拾对科学的信念以及对伽利略的赞赏——真空中,羽毛的下落的确与石头别无二致。

尽管如此,由于科学观察永远不是完全直接性和决定性的,我们仍需要一种更好的方式来描述科学与数学之间的关系。数学家并不是将科学理论直接应用于现实世界中,而是应用于模型上。在这里,模型可以看作是所要研究的那部分现实世界的一种虚构、简化的版本。在模型里,我们就有可能进行完全精确的计算。在扔石头的例子中,现实世界与模型的关系正如同图1和图2所展示的那样。

对于一种给定的物理情形,有多种方法将其模型化。我们需要结合切近的经验与深入的理论考量来决定,哪种模型更有可能向我们透露世界的本真。选择模型时,有一个需要优先考虑的因素,即模型的行为应当与实际中观察到的行为密切对应。

图1 飞行中的球甲

图2 飞行中的球乙

但是,诸如简洁、数学表达上的优雅等其他因素可能反而时常会更重要一些。实际上,确实有一些模型在现实世界中几乎找不到任何相似之物,但同时却非常有用。接下来有一些例子将会对此进行说明。

掷骰子问题

假设我要掷一对骰子,想要了解它们的行为如何。经验告诉我,问某些问题根本是不现实的。例如,不可能期待有人能预先告诉我某一次掷骰子的结果,即便是他掌握了很高超的科技,并且用机器来掷骰子。与此相反的是,关于概率的问题则常常是能够回答的,比如“两个骰子的结果之和为7的可能性有多大”之类的问题。这样的问题的答案可能也是有用处的,比方说在我玩双陆棋[1]赌钱的时候。这一类问题很容易模型化,只要将两个骰子掷出来的结果看作是从下列36个整数对中随机选取一个。

(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)

(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)

(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)

(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)

(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)

(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)

每组数对中第一个数表示骰子甲的结果,第二个数表示骰子乙的结果。恰有六组满足两数之和为7,因此掷出7的概率就是6/36,即1/6。

可能有人会反对这种模型,他们会说,骰子在滚动时是遵循牛顿定律的,至少在很高的精度上遵循,因此骰子落地的情况根本不是随机的:原则上是完全能够被计算出来的。但是,“原则上”这个短语在这里被过度使用了,因为这样的计算将会是极端复杂的,并且需要知道骰子的形状、材料、初始速度、旋转速度等更为精确的信息,而这般精确的信息在实际中是根本无法测出来的。因为这一点,使用某种更为复杂的决定论模型是无论如何也不会有任何优势的。

预测人口增长

较“软”性的科学——比如生物学和经济学中,也充斥着各种数学模型,这些模型都远比它们所要真正表示的现象简单得多,甚至以某些方式刻意地使其不够精确,但是这些模型还是有其用场、富于启发性。就以一个在经济学上有重要意义的生物学问题为例,我们来考虑预测一国未来20年的人口。我们可能会用到一种非常简单的模型,即将全国人口表示为一组数对(t,p(t)),其中t表示时间,p(t)表示时刻t的人口规模。另外我们要用到两个数b和d,来表示出生率和死亡率。所谓出生率和死亡率,即每年出生人数和死亡人数占总人口的比例。

假设我们已知2002年初的总人口是p。根据上述模型,2002年的出生人数和死亡人数将分别为bp和dp,因此2003年初的总人口将为p+bp-dp=(1+b-d)p。其他年份亦然,因此我们就能够写出公式p(n+1)=(1+b-d)p(n),意即n+1年年初的人口是n年年初人口乘以(1+b-d)。换句话说,每一年人口数量都会乘上(1+b-d)。那么20年后的人口就是乘以(1+b-d)20,于是就得出了初始问题的答案。

这个模型已经比较好了,它能向我们证明,如果出生率明显高于死亡率,那么人口就会急剧增长。但即便如此,它也还是不够现实的,它作出的预测可能很不精确。比方说,模型中假设出生率和死亡率在20年中都保持不变,这并不太可信。过去的事实已经证明,出生率和死亡率经常会受到社会变迁和政治事件的影响,如医学进步、新型疾病出现、女性首次生育年龄增大、税负激励以及偶尔发生的大规模战争等等。生育率与死亡率会随时间变化还有另一个原因,就是一国国民的年龄分布可能相当失衡。比方说,15年前出现了一波婴儿潮,那么我们就有理由预期再过10年到15年出生率就会增加。

因此,通过引入其他因素来使模型复杂化,这个想法相当诱人。我们记出生率和死亡率分别为b(t)和d(t),使其可以随时间变化。我们并不想单用一个数字p(t)来表示总人口,我们可能想要知道不同年龄层各有多少人。如果同时还能尽可能多地知道各个年龄层的社会态度和行为倾向,也会对预测未来的出生率和死亡率有所帮助。获取这样的统计信息是十分昂贵且困难的,但这些信息确实能够大幅提高预测的精度。因此,没有一种模型能够脱颖而出,声称比其他模型都好。关于社会和政治的变迁,谁也不可能确切地说出情况会是什么样子。关于某种模型,我们所能提出的合理问题,最多只能是问某种有条件的预测,也就是说模型只能告诉我们,这样的社会或政治变迁如果发生的话会产生怎样的影响。

气体的行为

气体动理论由丹尼尔·伯努利在1738年提出,后来又由麦克斯韦、玻尔兹曼等人在19世纪后半叶推进。根据这种理论,气体是由运动着的分子组成的,气体的许多性质——如温度和压强,都是这些分子的统计属性。譬如,温度就对应着分子的平均速度[2]。

有了这样的想法之后,让我们设想一种模型来描述方盒子中的气体。这个盒子当然应该用一个立方体来表示(意即数学的而非物理的)。既然分子是非常小的,那么用立方体中的点来表示也就很自然了。这些点应当是运动的,所以我们必须确定控制它们运动的规则。此时

Return Main Page Previous Page Next Page

®Reader's Club